Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae
نویسندگان
چکیده
Dicentric chromosomes undergo a breakage-fusion-bridge cycle as a consequence of having two centromeres on the same chromatid attach to opposite spindle poles in mitosis. Suppression of dicentric chromosome breakage reflects loss of kinetochore function at the kinetochore-microtubule or the kinetochore-DNA interface. Using a conditionally functional dicentric chromosome in vivo, we demonstrate that kinetochore mutants exhibit quantitative differences in their degree of chromosome breakage. Mutations in chl4/mcm17/ctf17 segregate dicentric chromosomes through successive cell divisions without breakage, indicating that only one of the two centromeres is functional. Centromere DNA introduced into the cell is unable to promote kinetochore assembly in the absence of CHL4. In contrast, established centromeres retain their segregation capacity for greater than 25 generations after depletion of Chl4p. The persistent mitotic stability of established centromeres reveals the presence of an epigenetic component in kinetochore segregation. Furthermore, this study identifies Chl4p in the initiation and specification of a heritable chromatin state.
منابع مشابه
CEP3 encodes a centromere protein of Saccharomyces cerevisiae
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP)...
متن کاملA Heterochromatin Barrier Partitions the Fission Yeast Centromere into Discrete Chromatin Domains
BACKGROUND Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation. Centromeric regions of higher eukaryotes are structurally complex, consisting of various epigenetically modified chromatin types including specialized chromatin at the kinetochore itself, pericentromeric heterochromatin, and flanking euchromatin. Although the fe...
متن کاملEndogenous Transcription at the Centromere Facilitates Centromere Activity in Budding Yeast
BACKGROUND The centromere (CEN) DNA-kinetochore complex is the specialized chromatin structure that mediates chromosome attachment to the spindle and is required for high-fidelity chromosome segregation. Although kinetochore function is conserved from budding yeast to humans, it was thought that transcription had no role in centromere function in budding yeast, in contrast to other eukaryotes i...
متن کاملAbnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast.
Saccharomyces cerevisiae cells containing one or more abnormal kinetochores delay anaphase entry. The delay can be produced by using centromere DNA mutations present in single-copy or kinetochore protein mutations. This observation is strikingly similar to the preanaphase delay or arrest exhibited in animal cells that experience spontaneous or induced failures in bipolar attachment of one or mo...
متن کاملThe histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast.
Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 160 شماره
صفحات -
تاریخ انتشار 2003